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Abstract
Classical theory yields an exact expression for the Lorentz force f(ζ, u) on a
point charge Q which has third coordinate ζ , and which has always moved with
strictly constant velocity u in a halfspace bounded by a perfectly reflecting
xy plane. On its own, f would produce an acceleration directed towards the
surface, smaller for any nonzero than for vanishing u. It is compared, to orders
u2/c2 and Q2, with quantum-perturbative predictions for an otherwise free
particle near variously modelled imperfect reflectors. For large ζ and/or high
reflectivity, the quantum results are dominated by components free of h̄, and
we reason that such components should agree with the corresponding classical
perfect-reflector results. This test is applied to several theories: some pass and
some fail.

PACS numbers: 03.50.De, 03.70.+k, 12.20.−m, 42.50.Pq

1. Introduction and conclusions

1.1. Motivation and preview

Quantum mechanics occasionally makes predictions that are free of Planck’s constant, and the
writer believes that these must agree with the corresponding predictions of classical physics.
Nonrelativistic examples include the Coulomb cross-section at all energies and angles, the
isotropic high-energy cross-section for hard-sphere scattering outside the forward diffraction
peak, and specific heats at high temperatures. Here we shall apply this criterion to the force on
a point charge near a reflecting surface, a poor relation of the famous Casimir–Polder force on
an atom. The classical predictions obtain in the limits of perfect reflection, or large distance,
or both.

Presently this introduction will spell out Maxwell’s equations and the pertinent boundary
conditions for perfect reflection, stressing, by hindsight, that the problem is fully determined
(‘well posed’) without reference to physics on the far side of the surface. Section 2 determines,
exactly, the classical fields due to a point charge Q constrained to move with strictly constant
velocity u near and always to one side of such a perfectly reflecting plane. The central
result is equation (2.7) for the acceleration a that they would produce in the absence of
the constraint, plus the perhaps surprising realization of just how tightly a is circumscribed
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by symmetries alone. Section 3 cites, still for perfect reflection, the conventionally-derived
quantum-perturbative result, concentrated as usual into an effective Hamiltonian (3.1) accurate
to orders Q2 and (u/c)2; derives its implications via Hamilton’s equations; and verifies that
they tally with the corresponding results from section 2.

Finally, section 4 cites quantum results variously derived for several different models of
reflectors, works out their consequences, and checks whether in the appropriate regimes they
too agree with classical physics. Those favoured by the writer do; some favoured by some
of his friends do not. Regarding plasmas, no attempt has yet been made to trace the precise
technical roots of the discrepancies. Regarding a nondispersive dielectric half-space with real
refractive index n, the discrepancies stem from a primary dependence of convective fields on
nu/c, additionally to their more explicit variation with n and with u/c separately.

1.2. Perfect reflection classically

We consider a point particle with charge Q and mass m, which hitherto (i.e. for all times t >

−∞) has followed, in the z > 0 half-space, a prescribed constant-velocity trajectory ρ(t) ≡
(ρ‖(t), ζ(t)) ≡ (ξ(t), η(t), ζ(t)), dρ/dt ≡ u = (u‖, u3). Evidently u3 cannot be positive.
We choose

ρ(0) = (0, ζ ), (1.1)

subject to the strict inequality ζ > 0. The half-space is bounded by the perfectly reflecting xy

plane. Thus1, with r‖ ≡ (x, y) and z > 0,

∇ · B = 0, ∇ × E − ∂B/c∂t = 0, (1.2)

∇ · E = 4πQδ(r − ρ(t)), ∇ × B − ∂E/c∂t = 4πQ(u/c)δ(r − ρ(t)); (1.3)

lim
z→0+

E‖(r‖, z) = 0 ⇒ lim
z→0+

∇‖ · E‖(r‖, z) = 0, lim
z→0+

[∇ × E(r‖, z)]3 = 0. (1.4)

In view of (1.4) the first of equations (1.3) and the second of equations (1.2), respectively,
entail

lim
z→0+

∂E3(r‖, z)/∂z = 0, lim
z→0+

∂B3(r‖, z)/∂t = 0. (1.5)

The second condition evidently fails to constrain time-independent contributions to
B3(z → 0+), which in general need vanish only on superconductors exhibiting the Meissner
effect. Into all other types of more or less realizable media the B fields of uniformly
moving charges do penetrate, as they must for combinations of them to realize the Ampèrian
field of a steady current parallel to the surface. To describe such penetration into Ohmic
conductors is known to be a very delicate problem (Boyer 1974, 1999), the more so because of
incompatibilities between the limits of vanishing speed and of perfect conduction; and because
expressing velocity-fields as linear superpositions of radiative normal modes is bedevilled by
the fact that for all modes with nonzero frequency (1.5) evidently does ensure that their
amplitudes B3 vanish on the surface. Hence it is fortunate that we are concerned with charges
having finite velocities and thereby time-varying fields, which the perfect-reflection limit does
eventually exclude from all materials; accordingly, in that limit (1.5) can indeed be sharpened
to

lim
z→0+

∂E3(r‖, z)/∂z = 0, lim
z→0+

B3(r‖, z) = 0, (1.6)

which are the boundary conditions universally adopted by analyses of normal modes.

1 We use unrationalized Gaussian units: the fine-structure constant for instance would read e2/h̄c � 1/137.
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We stress that our boundary conditions feature only the fields at z � 0. Provided these
conditions are satisfied, the physics in the right-hand half-space is uniquely determined,
regardless of what happens to the left. Furthermore, this and the next section make a point of
working only with the fields, so that the results are automatically gauge-invariant: potentials
will enter (implicitly) only with the Hamiltonians considered in sections 3 and 4.

2. The Lorentzian acceleration

At t = 0 the charge experiences the Lorentz force

f = Q{E(0, ζ ) + u × B(0, ζ )/c}. (2.1)

If the constraints confining the particle to the prescribed trajectory ρ(t) were suddenly switched
off, f would produce an acceleration (Landau and Lifshitz 1975, section 17)

a = Q

m

√
1 − u2/c2

{
E − 1

c2
u(u · E) +

1

c
u × B

}
. (2.2)

This section aims finds f and thence a. It does so without representing the fields as integrals
over normal modes, partly to avoid worries about whether it is legitimate to implement any
limits in question already on the integrands.

The retarded fields of a point charge moving uniformly in unbounded space are well
known: call them E0, B0. To satisfy the Maxwell equations (1.2), (1.3) subject to the
boundary conditions (1.4), (1.6), one need merely add the corresponding fields Ẽ, B̃ generated
by a particle of charge Q̃ following the mirror trajectory ρ̃, where

Q̃ = −Q, ρ̃(t) ≡ (ρ‖(t),−ζ(t)), dρ̃/dt ≡ ũ(t) = (u‖(t),−u3(t)). (2.3)

Thus2 E = E0 + Ẽ, and likewise for B. However, we wish to exclude from f the force that the
particle would exert on itself in the absence of any reflectors; in other words we drop the fields
E0, B0, and find a from (2.2) after replacing (E, B) → (Ẽ, B̃) there. Accordingly (Landau
and Lifshitz 1975, section 38)

E → Q̃R(1 − ũ2/c2)

R3[1 − (ũ/c)2 sin2 θ̃]3/2
, B → ũ × E/c, (2.4)

R ≡ ρ − ρ̃ = ẑ2ζ, cos θ̃ ≡ R · ũ
Rũ

= ũ3

ũ
= −u3

u
. (2.5)

Hats specify unit vectors. It follows straightforwardly that

E = −ẑE, B = (ẑ × u/c)E, E ≡ Q

4ζ 2
· [1 − u2/c2][

1 − u2
‖
/
c2

]3/2 . (2.6)

On substitution into (2.2) there is some cancellation between the electric and magnetic
contributions to the velocity-dependent parts, and eventually one obtains

a = −ẑ
Q2

4ζ 2m
· [1 − u2/c2]5/2[

1 − u2
‖
/
c2

]3/2 = −ẑ
Q2

4ζ 2m

{
1 − u2

‖
/
c2 − 5u2

3

/
2c2 + O(u/c)4

}
. (2.7)

Note that nonzero u always diminishes the acceleration towards the boundary: in this sense,
all velocity-dependent corrections are repulsive.

2 Such simplicity stems from symmetries attending Q̃ = −Q, which are peculiar to perfect reflection. For reflection
of any other kind the corresponding calculations are far more complicated.
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It is worth observing that symmetries alone force a‖ to vanish. If u′
‖ = 0 relative to the

rest-frame S ′ of the medium, then a′
‖ = 0 simply by parity, whatever the reflectivity. But if

the material reflects perfectly, then the boundary conditions reduce to (1.4), (1.6) regardless of
its velocity parallel to the surface, so that they as well as the field equations become invariant
under surface-parallel Lorentz boosts. Let the frame S have velocity −u‖ relative to S ′, so
that the particle velocity relative to S is u‖ + ẑu3. Then, given u′

‖ = 0 = a′
‖, the Lorentz

transformation of accelerations from S ′ to S immediately prescribes a‖ = 0, as in (2.7 ).
Likewise one can verify that such boosts fully determine how a3 varies with u‖.

The next section will compare the terms of order u2/c2 with results from perturbation
theory. The textbooks discuss how restricting f to this order validates it with u interpreted as
the instantaneous velocity, liberating one from the assumption that u has been constant at all
times up to the present.

3. Quantum perturbation theory

3.1. An effective Hamiltonian

The standard approach to the velocity dependence is indirect: quantize the Maxwell
field in the half-space, using the pseudo-Coulomb gauge for the vector potential A, with
∇ · A = 0 but A3(r‖, 0+) �= 0 (Barton 1977, 2007); couple particle to field through
Hint = −Q2/4ζ −(Q/mc)A(ρ) · p+(Q2/2mc2)A2(ρ), with ρ, p now the canonical variables
of the particle; and for a particle localized quasi-classically in both ρ and p write down
the ground-state energy shift second-order in −(Q/mc)A(ρ) · p. For simplicity, we shall
designate such shifts, and other allied expressions, as ‘of order u2/c2’: although the difference
between p/mc and u/c will presently be seen to matter a great deal, it does not prejudice
the usefulness of this shorthand. In an equally obvious sense, we shall speak of and restrict
ourselves to ‘terms of order Q2’. To these orders, one can and does adopt the so-called
no-recoil approximation to the energy denominators, dropping particle energies and keeping
only the energy of the virtual photon.

Crucially, the result is free of h̄. Adjoining it to the kinetic energy plus the unretarded
image potential, one obtains the quantally derived but in the event purely classical effective
Hamiltonian:

H = p2/2m − Q2/4ζ + {−p4/8m3c2 + �H }, �H ≡ (Q2/m2c2ζ )
[
p2

‖
/

8 − p2
3

/
4
]
.

(3.1)

The braces combine �H with the first relativistic correction to the kinetic energy, needed
for consistency to order (u/c)2. (One can easily check that making the latter gauge-invariant
would have no effect to the orders to which we are working.) The interaction �H has
been doctored to ensure that it vanishes as ζ → ∞, and terms proportional to δ(ζ ) have been
dropped. The leading correction excluded from H is the typically quantal vacuum expectation-
value (Q2/2mc2){1 − limζ→∞}〈A2(ρ)〉 = Q2h̄/4πmcζ 2. It measures the kinetic energy of
the random motion driven by the zero-point oscillations of the quantized field, and is smaller
than �H when ζ � (h̄/mc)(c2/u2).

An alternative way to establish H simply writes down the O(u/c)2 Darwin Hamiltonian
for two particles a and b interacting electromagnetically (Landau and Lifshitz 1975,
equation (65.8)), and then adapts it to our scenario by identifying a as the particle we actually
have, and assimilating b to the image. Accordingly one drops the kinetic energy of b; replaces
the separation Rab by 2ζ and R̂ab by ẑ; in the interaction replaces pb → (pa‖ − ẑpa3); and
finally multiplies the entire interaction by the familiar image factor 1/2.
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Our object is to compare the velocity-dependent accelerations from (2.7) with those that
follow canonically from H. Since the conditions that validate (2.7) also validate �H (though
not vice versa) the two expressions must agree3. The introduction has already explained that
the main point of the exercise is diagnostic: some applications are discussed in section 4. As to
verifying �H through the motion of ions near metal surfaces, the prospects are poor, because
in unmodified form it applies only at large ζ , where the effects are weak, while at small ζ

it is modified by Ohmic friction, and by the dispersive effects of finite plasma frequencies.
The most one can say is that expectation values of �H turn up in some subdominant parts of
mirror-induced atomic energy shifts.

3.2. The acceleration via Hamilton’s equations

Recall that H in (3.1), and therefore its consequences, are warranted only to orders Q2 and
u2/c2. From H, we obtain

dζ

dt
= u3 = ∂H

∂p3
= p3

m

[
1 − p2

‖ + p2
3

2m2c2
− Q2

2mc2ζ

]
, (3.2)

dρ‖
dt

= u‖ = ∂H

∂p‖
= p‖

m

[
1 − p2

‖ + p2
3

2m2c2
+

Q2

4mζ

]
; (3.3)

dp3/dt = −∂H/∂ζ = −(Q2/4ζ 2)
[
1 − p2

‖
/

2m2c2 + p2
3

/
m2c2

]
, (3.4)

dp‖/dt = −∂H/∂ρ‖ = 0. (3.5)

Now differentiate (3.3), use (3.5), substitute from (3.4), and rearrange:

md2ρ‖/d
2t = p‖{−(p3/m2c2) dp3/dt − (Q2/4mc2ζ ) dζ/dt}

= p‖

{
p3

m2c2

[
Q2

4ζ 2
+

Q2

8m2c2ζ 2

(
p2

‖ − 2p2
3

)] − Q2

4m2c2ζ 2
· dζ

dt

}
= 0. (3.6)

The final equality follows (i) because to overall order u2/c2 the second term inside the square
brackets drops out; and (ii) because to overall order Q2 we may in the last term replace
dζ/dt → p3/m.

Similarly, differentiate (3.2), again use (3.5), substitute from (3.2) itself, and rearrange:

m
d2ζ

dt2
= − Q2

4ζ 2

[
1 −

(
p2

‖ − 2p2
3

)
2m2c2ζ 2

] [
1 −

(
p2

‖ + 3p2
3

)
2m2c2

− Q2

2mc2ζ

]
+

Q2

2mc2ζ 2
p3

dζ

dt
.

To overall order Q2 we must drop the last term inside the second pair of square brackets, and
may replace all p → mu; and from the product of the two pairs of square brackets we must
drop the terms of overall order u4/c4. A final rearrangement then reproduces the Lorentzian
result (2.7).

We stress that not only the precise magnitudes but the entire pattern of the accelerations
depend critically on the kinetic-energy correction −p4/8m3c2 in H. Without it the acceleration
would read

a‖ = −(Q2/4ζ 2m)u3u‖/c2, a3 = (Q2/4ζ 2m)
[
1 − u2

‖
/

2c2 − u2
3

/
c2

]
: wrong.

3 Prima facie this is paradoxical: the velocity-dependent part of (2.7) is purely repulsive, whereas the p2
‖—and

p2
3—proportional parts of �H have opposite signs, whence one might well have expected their effects to turn out

repulsive and attractive respectively.
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For other comparisons, it will prove worth recording that if one replaced (3.1) by the less
specific Hamiltonian

H ′ ≡ p2/2m − αQ2/4ζ − p4/8m3c2 + (Q2/m2c2ζ )
[
λp2

‖ + µp2
3

]
(3.7)

one would find

a′ = Q2

ζ 2m

{
u‖u3

c2

(α

4
− 2λ

)
+ ẑ

[
−α

4
+

u2
‖

c2

(α

8
+ λ

)
+

u2
3

c2

(
3α

8
− µ

)]}
. (3.8)

4. Diagnostics

The interaction �H in (3.1), operative in the half-space z > 0 , emerges not only when the xy

plane is treated as perfectly reflecting from the start, but also as an appropriate limit in some
slightly less idealized models for the boundary.

(i) First, the half-space z < 0 may be modelled as a plasma with the bulk dielectric response
function ε = 1 − ω2

p

/
ω2 at frequency ω, perfect reflection being approached as the

plasma-frequency ωp tends to infinity. This model yields the momentum-dependent part
of the interaction in the form (Barton 1977)

(Q2/m2c2ζ )
[
(‖)(s)p2

‖ + (3)(s)p2
3

]
, s ≡ 2ωpζ/c, (4.1)

with dimensionless functions4 (s) related to Bessels. The dimensional limits ωp → ∞
and ζ → ∞ evidently commute with each other, but not with the so-called
nonrelativistic/nonretarded limit c → ∞; and it is s → ∞ that reproduces (3.1). By
contrast, as s → 0 one finds −(

Q2/8m2ω2
pζ 3

)[
p2

‖ + 2p2
3

]
; however, with decreasing s the

model eventually fails through its disregard of Debye-type wave-number cutoffs and of
spatial dispersion.

(ii) Second, the xy plane may be modelled as an infinitesimally thin but finitely reflecting
2D plasma sheet (Barton 2005)5, roughly mimicking a single base plane from graphite.
Its optical properties are governed by the dimensional parameter qp ≡ 2πne2/µ̄c2, with
ne, nµ̄ the equilibrium charge and mass of the mobile charge carriers per unit area. The
analogue of (4.1) then replaces the (s) by dimensionless functions �(σ ≡ 2qpζ ),
related to exponential integrals. Their various limits are subject to comments analogous
to those about ’s. Here too σ → ∞ reproduces (3.1); by contrast, σ → 0 produces
−(Q2µ̄/32πne2m2ζ 2)

[
p2

‖ + 2p2
3

]
, with the model eventually failing for the same reasons

as the 3D model fails.
(iii) A different theory for the same models has been proposed by Bordag (2004, 2007: cited

as MB). In the perfect-reflection and/or large-distance limits it agrees with (3.1) when
the boundary is backed by a 3D plasma occupying the half-space z < 0; but when
the boundary is constituted by the 2D sheet described above, MB derives a different
interaction, replacing our �H with

�H |MB = (Q2/m2c2ζ )
[−p2

‖
/

8 − p2
3

/
4
]
, (4.2)

while nevertheless admitting the boundary conditions (1.4), (1.6 ) in the perfect-reflection
limit. Through (3.7), (3.8), equation (4.2) predicts accelerations

4 Though �H is restricted to second order in u/c, the model applies to all orders in s ≡ 2ωpζ/c. That is one reason
never to speak simply of ‘approximations to order 1/c2’.
5 The symbols M, m, ζ there correspond to m, µ̄, σ in the present paper.
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ma‖|MB = (Q2/4ζ 2)2u3u‖/c2, ma3|MB = −(Q2/4ζ 2)
[
1 − 5u2

3

/
2c2

]
, (4.3)

differing spectacularly from (2.7).
The most obvious difference from (ii) is that MB quantizes the Maxwell field in a

different gauge; by contrast, our section 2 of course features only the fields, and does not
quantize at all.

(iv) As an altogether different scenario one can envisage a dissipative half-space with plasma
frequency ωp and Ohmic conductivity σ (not to be confused with the parameter σ from
paragraph (ii)), and determine the drag force on an exterior charge constrained to constant
u‖. For simplicity, we consider only the regime where u/ωpζ � 1. In a purely classical
Maxwellian calculation focused on the B fields inside and out, Boyer (1974) found
f = −uQ2/16πσζ 3. Remarkably, the same result follows from quantum-mechanical
calculations which take u/c → 0 from the outset (so that all the above �H vanish),
and which ignore B fields altogether (Tomassone and Widom 1997, Barton 2000). Our
point is that the mere absence of h̄ from the result has indeed ensured agreement between
correct calculations even when they proceed from starting points and in ways as apparently
disjoint as these do.

(v) Eberlein and Robaschik (2004, 2006a, 2006b: cited as ER) report the self-energy �(ζ, p)

of an electron quasiclassically localized outside an insulating half-space z < 0, with
ε = n2 at all frequencies. The momentum-dependent parts of � deliver what is effectively
their expression for our �H . In terms of

α ≡ (n2 − 1)/(n2 + 1), lim
n→∞ α = 1 (4.4)

it reads

HER ≡ p2

2m
− αQ2

4ζ
− p4

8m3c2
+

Q2

m2c2ζ

[
−

(
α + α2

16

)
p2

‖ −
(

3α + α2

8

)
p2

3

]
, (4.5)

where one notes that

lim
n→∞ �H |ER = (Q2/m2c2ζ )

[−p2
‖
/

8 − p2
3

/
2
]
. (4.6)

One crucial difference from plasma models is that theirs has no dimensional inputs like ωp

or qp, whence it has no distinct long-distance and short-distance regimes, and can approach
perfect reflection only uniformly in ζ . This contrasts sharply with the plasma models6

discussed in paragraphs (i)–(iii), where the formal perfect-reflection limit is mathematically
equivalent to the long-distance limit, but at short distances becomes inoperable.

The point at issue is the apparent paradox that, even though n → ∞ produces perfect
reflection, (4.6) differs7 from the perfect-reflector limit �H in (3.1). A classical check on
(4.5) requires the image fields at the particle, and their scalar and vector potentials there; to
find these one must extend the arguments of section 2 to both half-spaces, subject now to the
appropriate matching conditions E‖(r‖, 0−) = E‖(r‖, 0+) and n2E3(r‖, 0−) = E3(r‖, 0+).
Then the outside fields determine the acceleration directly, while the outside potentials yield
the effective interaction Hamiltonian. Such calculations (Barton 2007) in the nonrelativistic
regime (u/c)2 � 1 reproduce �H |ER and the accelerations corresponding to it as long as
(nu/c)2 � 1, compatibly with very large but not with arbitraily large n. Thus (4.6) can serve
as an excellent approximation over a wide range; but the present writer thinks that as n → ∞
its quantal derivation must eventually fail.
6 Of course the plasma models are also highly restrictive, in that one and the same (and dimensional) parameter
controls both the absolute magnitude and the dispersion of the reflectivity. To avoid both handicaps one would have
to have to consider a dispersive insulator, say one described by ε = (ω2

L − ω2)/(ω2
T − ω2).

7 ER derive (4.5) via an integral over normal modes, and note that (3.1) would emerge if n → ∞ were implemented
in the integrand, and the integration carried out afterward. But they emphasize that the integration must be done first,
yielding (4.5), and that the limit (when physically appropriate) must be implemented only on �HER , as in (4.6).
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